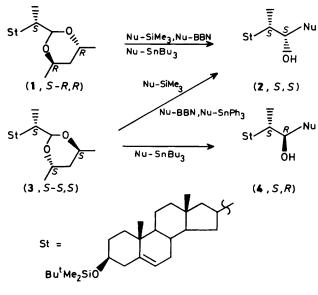
Synergistic Effect of Multichiral Centres. Chelation Control *vs.* Acetal Template in 1,3-Asymmetric Induction

Yoshinori Yamamoto* and Jun-ichi Yamada


Department of Chemistry, Faculty of Science, Tohoku University, Sendai 980, Japan

The allylation of the β -siloxyacetal (5), (*S*–*R*,*R* isomer) in the presence of TiCl₄ gave the chelation adduct (6) with very high selectivity, while the (*R*–*R*,*R*) isomer (8) also produced the chelation adduct (9), indicating that the 1,3-asymmetric induction is dictated by chelation rather than the acetal template.

We recently reported that (1) (*S*–*R*,*R* isomer) gave (2) upon treatment with nucleophiles, while (3) (*S*–*S*,*S* isomer) also produced (2) when treated with organometallic reagents with low nucleophilicity but afforded (4) with organometallic reagents with high nucleophilicity¹ (Scheme 1). The high asymmetric induction from (1) to (2) is a reflection of the synergistic effect of the 1,2- and 1,3-chiral centres. The conversion of (3) into (2) indicates loss of the effect of the 1,3chiral centre. The question of whether multichiral centres in the same reactant exert a synergistic effect upon asymmetric induction or offset one another has not been investigated systematically.² We now report a synergistic effect of two 1,3chiral centres.

The cyclic acetal derivatives, (5) (S-R,R) and (8) (R-R,R), were prepared from the corresponding methyl (S)- and (R)-3-hydroxybutyrates, respectively.^{3†} Allylation with several allylmetal reagents in the presence of TiCl₄, followed by the usual work-up,⁴ gave the homoallyl alcohols in good yields (Scheme 2). The results are summarized in Table 1.‡

The (S-R,R) isomer (5) gave the chelation adduct (6) (S,S) isomer) with very high stereoselectivity regardless of the nucleophilicity of the reagent (entries 1---3). This is reason-

Scheme 1. Nu = nucleophile

+ (*R*)- and (*S*)-3-(methoxy)-methoxybutanals were converted into the corresponding acetals, which were partially hydrolysed to give the corresponding 3-hydroxyacetals. Silyl protection of the resulting hydroxyacetals gave (5) and (8).

[‡] Structures were determined as described previously (ref. 3). The adducts were hydrolysed to the 1,3-diols with Bu_4NF . These diols were converted into the corresponding 1,3-dioxane derivatives with *p*-nitrobenzaldehyde.

able, since the effects of both the chelation and the acetal template operate in the same direction to enhance the 1,3-asymmetric induction. The reaction of (8) (R-R,R isomer) also produced the chelation adduct (9) (R,R isomer) predominantly (entries 4 and 5). If the acetal template had dictated chiral induction, the non-chelation isomer (10) (R,S) would have predominated. Therefore, it is clear that 1,3-asymmetric induction is dictated primarily by the chelation, rather than the acetal template.

The relatively low selectivity of allyltributyltin compared with that of allyl-9-BBN (70:30 vs. 90:10) reflects the high nucleophilicity of the tin reagent.¹ The boron reagent reacts after bond breaking in the acetal template, thus the chiral induction is completely dictated by the chelation (entry 5 vs.

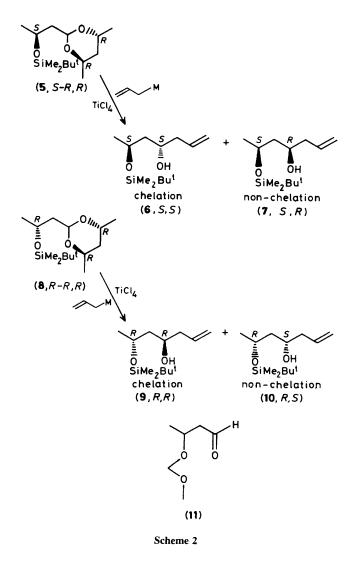


Table 1. TiCl₄ mediated allylation of β-siloxyacetals.^a

Entry		M in	Dendestatish	Total yield /%	Chirality of the major isomer ^c	
	β-Siloxyacetal	allylmetal reagent	Product ratio ^b Chelation : Non-chelation		Template	Chelation
			(6):(7)			
1	(5)	SnBu ₃	94: 6	88	+	+
2	(5)	SiMe ₃	94: 6	82	+	+
3	(5)	BBN ^d	90:10	90	+	+
			(9):(10)			
4	(8)	$SnBu_3$	70:30	88	_	+
5	(8)	BBNd	90:10	92	-	+
6	(11)	SnBu ₃	79:21	93		

^a All reactions were carried out on a 1 mmol scale as described previously.^{1,3} ^b Determined by 400 MHz ¹H n.m.r. spectroscopy. ^c The chirality of the major isomer was (+) consistent with or (-) opposite to the chirality predicted either by the template or by the chelation concept. ^d 9-Borabicyclo[3.3.1]nonan-9-yl.

3). The related β -alkoxyaldehyde (11) produced moderate selectivity (entry 6).⁵ It is thus clear that high 1,3-asymmetric induction (entry 1) is realized with the synergistic effect of the chelation and acetal template.

Received, 9th March 1987; Com. 287

References

- 1 Y. Yamamoto, S. Nishii, and J. Yamada, J. Am. Chem. Soc., 1986, 108, 7116.
- 2 S. Masamune, W. Choy, J. S. Petersen, and L. R. Sita, Angew. Chem., Int. Ed. Engl., 1985, 24, 1, investigated double asymmetric induction in reactions between a chiral reagent and a chiral substrate, whereas our system involves the asymmetric induction between an achiral reagent and a chiral substrate which has multi-chiral centres.
- 3 Y. Yamamoto, T. Komatsu, and K. Maruyama, J. Organomet. Chem., 1985, 285, 31.
- 4 P. A. Bartlett, W. S. Johnson, and J. D. Elliott, J. Am. Chem. Soc., 1983, 105, 2088.
- 5 M. T. Reetz and A. Jung, J. Am. Chem. Soc., 1983, 105, 4833. Although the benzyloxy protected aldehyde produced high selectivity, the selectivity decreased with the methoxymethyl protected derivatives (11).